总结一下二叉树常见的遍历方式
二叉树节点类
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
| public class TreeNode { int val; TreeNode left; TreeNode right;
public TreeNode() { }
public TreeNode(int val) { this.val = val; }
public TreeNode(int val, TreeNode left, TreeNode right) { this.val = val; this.left = left; this.right = right; } }
|
由于二叉树的天然递归性,一般二叉树的题目都是用递归的方法写,代码会简洁易读,但是想要写出漂亮的递归,需要进行大量的练习,递归易读难写。
二叉树的遍历当然也可以用迭代实现,不过代码会比递归繁琐一些,因为需要手动维护一个栈,而递归栈是由系统帮我们维护的。迭代也有优点,那就是当递归层次过深时,会爆栈,而迭代基本不会。
想要理解各种遍历代码的意思,建议现在纸上手动遍历二叉树,将其中的过程理解清楚,才能更好地理清代码逻辑,不然越看越糊涂。
前序遍历
题目练习:二叉树的前序遍历
前序遍历的顺序是“根节点 - 左子树 - 右子树”,即先访问根节点,再依次访问左子树、右子树。在访问子树时,也要遵循“根 - 左 - 右”的顺序。
递归
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| class Solution { List<Integer> list = new ArrayList<>();
public List<Integer> preorderTraversal(TreeNode root) { preorder(root); return list; }
public void preorder(TreeNode node) { if (node == null) { return; } list.add(node.val); preorder(node.left); preorder(node.right); } }
|
迭代
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> ans = new ArrayList<>(); if (root == null) { return ans; } Deque<TreeNode> stack = new LinkedList<>(); TreeNode node = root; while (!stack.isEmpty() || node != null) { while (node != null) { ans.add(node.val); stack.push(node); node = node.left; } node = stack.pop(); node = node.right; } return ans; } }
|
中序遍历
题目练习:二叉树的中序遍历
递归
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { List<Integer> ans = new ArrayList<>();
public List<Integer> inorderTraversal(TreeNode root) { inorder(root); return ans; }
public void inorder(TreeNode node) { if (node == null) { return; } inorder(node.left); ans.add(node.val); inorder(node.right); } }
|
迭代
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> ans = new ArrayList<>(); Deque<TreeNode> stack = new LinkedList<>(); TreeNode node = root; while (!stack.isEmpty() || node != null) { while (node != null) { stack.push(node); node = node.left; } node = stack.pop(); ans.add(node.val); node = node.right; } return ans; } }
|
后序遍历
递归
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { List<Integer> ans = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) { postorder(root); return ans; }
public void postorder(TreeNode node) { if (node == null) { return; } postorder(node.left); postorder(node.right); ans.add(node.val); } }
|
迭代
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| class Solution { public List<Integer> postorderTraversal(TreeNode root) { List<Integer> ans = new ArrayList<>(); if (root == null) { return ans; }
Deque<TreeNode> stack = new LinkedList<>(); TreeNode node = root, prev = null; while (node != null || !stack.isEmpty()) { while (node != null) { stack.push(node); node = node.left; } node = stack.pop(); if (node.right == null || node.right == prev) { ans.add(node.val); prev = node; node = null; } else { stack.push(node); node = node.right; } } return ans; } }
|
层序遍历
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
public List<List<Integer>> levelOrder(TreeNode root) { List<List<Integer>> ans = new ArrayList<>(); if (root == null) { return ans; }
Queue<TreeNode> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { int size = queue.size(); List<Integer> temp = new ArrayList<>(); for (int i = 0; i < size; i++) { TreeNode node = queue.poll(); temp.add(node.val); if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } } ans.add(temp); } return ans; }
|